Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.
На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R.
Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе.
Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.
Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.
Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз.
Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку.
Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.
Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол.
Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол.
Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.
- Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.
- Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.
- (Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).
Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.
Определение основных понятий в интенсивной терапии
Основные понятия
Артериальное давление характеризуется показателями систолического и диастолического давления, а также интегральным показателем: среднее артериальное давление. Среднее артериальное давление рассчитывается как сумма одной трети пульсового давления (разницы между систолическим и диастолическим) и диастолического давления.
- Среднее артериальное давление само по себе не описывает адекватно функцию сердца. Для этого используются следующие показатели:
- Сердечный выброс: объем крови, изгоняемой сердцем за минуту.
- Ударный объём: объем крови, изгоняемой сердцем за одно сокращение.
- Сердечный выброс равен ударному объёму, умноженному на ЧСС.
Сердечный индекс – это сердечный выброс, с коррекцией на размеры пациента (на площадь поверхности тела). Он точнее отражает функцию сердца.
Преднагрузка
Ударный объём зависит от преднагрузки, постнагрузки и сократимости.
Преднагрузка – это мера напряжения стенки левого желудочка в конце диастолы. Она трудно поддаётся прямому количественному определению.
Непрямыми показателями преднагрузки служат центральное венозное давление (ЦВД), давление заклинивания лёгочной артерии (ДЗЛА) и давление в левом предсердии (ДЛП). Эти показатели называют «давлениями наполнения».
Конечно-диастолический объём левого желудочка (КДОЛЖ) и конечно-диастолическое давление в левом желудочке считаются более точными показателями преднагрузки, однако они редко измеряются в клинической практике.
Ориентировочные размеры левого желудочка могут быть получены с помощью трансторакального или (точнее) чреспищеводного УЗИ сердца.
Кроме того, конечно-диастолический объём камер сердца высчитывается с помощью некоторых методов исследования центральной гемодинамики (PiCCO).
Постнагрузка
Постнагрузка – это мера напряжения стенки левого желудочка во время систолы.
Она определяется преднагрузкой (которая обусловливает растяжение желудочка) и сопротивлением, которое встречает сердце при сокращении (это сопротивление зависит от общего периферического сопротивления сосудов (ОПСС), податливости сосудов, среднего артериального давления и от градиента в выходном тракте левого желудочка).
ОПСС, которое, как правило, отражает степень периферической вазоконстрикции, часто используется как непрямой показатель постнагрузки. Определяется при инвазивном измерении параметров гемодинамики.
Сократительная способность и комплайнс
- Сократимость – это мера силы сокращения миокардиальных волокон при определённых пред- и постнагрузке.
- Среднее артериальное давление и сердечный выброс часто используются как непрямые показатели сократимости.
- Комплайнс – это мера растяжимости стенки левого желудочка во время диастолы: сильный, гипертрофированный левый желудочек может характеризоваться низким комплайнсом.
- Комплайнс трудно количественно измерить в клинических условиях.
- Конечно-диастолическое давление в левом желудочке, которое можно измерить во время предоперационной катетеризации сердца или оценить по данным эхоскопии, является непрямым показателем КДДЛЖ.
Важные формулы расчета гемодинамики
- Сердечный выброс = УО * ЧСС
- Сердечный индекс = СВ/ППТ
- Ударный индекс = УО/ППТ
- Среднее артериальное давление = ДАД + (САД-ДАД)/3
- Общее периферическое сопротивление = ((СрАД-ЦВД)/СВ)*80)
- Индекс общего периферического сопротивления = ОПСС/ППТ
- Сопротивление лёгочных сосудов = ((ДЛА — ДЗЛК)/СВ)*80)
- Индекс сопротивления лёгочных сосудов = ОПСС/ППТ
- CВ = сердечный выброс, 4,5-8 л/мин
- УО = ударный объем, 60-100 мл
- ППТ = площадь поверхности тела, 2- 2,2 м 2
- СИ = сердечный индекс, 2,0-4,4 л/мин*м2
- ИУО = индекс ударного объема, 33-100 мл
- СрАД = Среднее артериальное давление, 70- 100 мм рт.
ДД = Диастолическое давление, 60- 80 мм рт. ст.
САД = Систолическое давление, 100- 150 мм рт. ст.
ОПСС = общее периферическое сопротивление, 800-1 500 дин/с*см 2
ЦВД = центральное венозное давление, 6- 12 мм рт. ст.
ИОПСС = индекс общего периферического сопротивления, 2000-2500 дин/с*см 2
СЛС = сопротивление лёгочных сосудов, СЛС = 100-250 дин/с*см 5
ДЛА = давление в лёгочной артерии, 20- 30 мм рт. ст.
ДЗЛА = давление заклинивания лёгочной артерии, 8- 14 мм рт. ст.
ИСЛС = индекс сопротивления лёгочных сосудов = 225-315 дин/с*см 2
Оксигенация и вентиляция
- Оксигенация (содержание кислорода в артериальной крови) описывается такими понятиями, как парциальное давление кислорода в артериальной крови (Pa 02 ) и сатурация (насыщение) гемоглобина артериальной крови кислородом (Sa 02 ).
- Вентиляция (движение воздуха в лёгкие и из них) описывается понятием минутный объём вентиляции и оценивается путём измерения парциального давления углекислого газа в артериальной крови (Pa C02 ).
- Оксигенация, в принципе, не зависит от минутного объёма вентиляции, если только он не очень низкий.
В послеоперационном периоде основной причиной гипоксии являются ателектазы лёгких. Их следует попытаться устранить до того, как увеличивать концентрацию кислорода во вдыхаемом воздухе( Fi02 ).
- Для лечения и профилактики ателектазов применяются положительное давление в конце выдоха (РЕЕР) и постоянное положительное давление в дыхательных путях (СРАР).
- Потребление кислорода оценивается косвенно по сатурации гемоглобина смешанной венозной крови кислородом (Sv 02 ) и по захвату кислорода периферическими тканями.
- Функция внешнего дыхания описывается четырьмя объёмами (дыхательный объём, резервный объём вдоха, резервный объём выдоха и остаточный объём) и четырьмя ёмкостями (ёмкость вдоха, функциональная остаточная ёмкость, жизненная ёмкость и общая ёмкость лёгких): в ОИТР в повседневной практике используется только измерение дыхательного объёма.
Уменьшение функциональной резервной ёмкости вследствие ателектазов, положения на спине, уплотнения лёгочной ткани (застойные явления) и коллапса лёгких, плеврального выпота, ожирения приводят к гипоксии.СРАР, РЕЕР и физиотерапия направлены на ограничение этих факторов.
Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением.
Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:
где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.
Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк. используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
где Р1—Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332— коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных.
Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми.
Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.
В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин • с ¦ см. при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200—3000 дин • с • см-5.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов.
При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.
3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте.
На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
Психофизиологическая экспертиза — Лохограф [Восстановленный ролик]
2013 10 09 — Козье молоко (Лобня)
Системное артериальное давление. Общее периферическое сопротивление сосудов
- Рубрики
- Анатомия
- Без рубрики
- БОЛЕЗНИ
- ДИЕТЫ
- ЗДОРОВЫЙ ОБРАЗ ЖИЗНИ
- ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ
- Лечение за рубежом
- Микробиология
- МКБ-10
- Класс I
- Класс II
- Класс III
- Класс IV
- Класс V
- Класс VI
- Класс VII
- Класс XI
- НЕВРОЛОГИЯ И НЕЙРОХИРУРГИЯ
- ОРГАНИЗМ ЧЕЛОВЕКА
- ОСНОВНЫЕ ПОНЯТИЯ
- ПЕРВАЯ ПОМОЩЬ
- Разное
- СЛОВАРЬ МЕДИЦИНСКИХ ТЕРМИНОВ
- ФАРМАКОГНОЗИЯ
- Лекарственные растения
- Общие положения
- ФАРМАКОЛОГИЯ
- ФИЗИОЛОГИЯ ЧЕЛОВЕКА
Основными параметрами, характеризующими системную гемодинамику, являются: системное артериальное давление, общее периферическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови
Системное артериальное давление
Внутрисосудистое давление крови является одним из основных параметров, по которому судят о функционировании сердечно-сосудистой системы.
Артериальное давление есть интегральная величина, составляющими и определяющими которую являются объемная скорость кровотока (Q) и сопротивление (R) сосудов.
Поэтому системное артериальное давление (САД) является результирующей величиной сердечного выброса (СВ) и обшего периферического сопротивления сосудов (ОПСС):
- САД = СВ x ОПСС
- Равным образом давление в крупных ветвях аорты (собственно артериальное) определяется как
- АД = Q x R
Применительно к артериальному давлению различают систолическое, диастолическое, среднее и пульсовое давления.
Систолическое — определяется в период систолы левого желудочка сердца, диастолическое — в период его диастолы, разница между величиной систолического и диастолического давлений характеризует пульсовое давление, а в упрощенном варианте среднее арифметическое между ними — среднее давление (рис.7.2).
Рис.7.2. Систолическое, диастолическое, среднее и пульсовое давления в сосудах.
Величина внутрисосудистого давления при прочих равных условиях определяется расстоянием точки измерения от сердца. Различают, поэтому, аортальное давление, артериальное давление, артериоляр-ное, капиллярное, венозное (в мелких и крупных венах) и центральное венозное (в правом предсердии) давление.
В биологических и медицинских исследованиях общепринятым является измерение артериального давления в миллиметрах ртутного столба (мм рт.ст.), а венозного — в миллиметрах водного столба (мм вод.ст.).
Измерение давления в артериях производится с помощью прямых (кровавых) или косвенных (бескровных) методов.
В первом случае, катетер или игла вводятся непосредственно в просвет сосуда, а регистрирующие установки могут быть различные (от ртутного манометра до совершенных электроманометров, отличающихся большой точностью измерения и разверсткой пульсовой кривой).
Во втором случае, используются манжеточные способы сдавливания сосуда конечности (звуковой метод Короткова, пальпаторный — Рива-Роччи, осциллографический и др.).
У человека в покое наиболее усредненным из всех средних величин считается систолическое давление — 120-125 мм рт.ст., диа-столическое — 70-75 мм рт.ст. Эти величины зависят от пола, возраста, конституции человека, условий его работы, географического пояса проживания и т.д.
Являясь одним из важных интегральных показателей состояния системы кровообращения, уровень АД, однако, не позволяет судить о состоянии кровоснабжения органов и тканей или объемной скорости кровотока в сосудах.
Выраженные перераспределительные сдвиги в системе кровообращения могут происходить при неизменном уровне АД благодаря тому, что изменения ОПСС могут компенсироваться противоположными сдвигами СВ, а сужение сосудов в одних регионах сопровождается их расширением в других.
При этом одним из важнейших факторов, определяющих интенсивность кровоснабжения тканей, является величина просвета сосудов, количественно определяемая через их сопротивление кровотоку.
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
ОПСС = САД / СВ
которое используется в физиологической и клинической практике для расчета величины этого параметра или его изменений. Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
- Прямых бескровных методов измерения общего периферического сопротивления пока не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:
- R = 8lη / πr4
- где R — гидравлическое сопротивление, l — длина сосуда, η — вязкость крови, r — радиус сосудов.
- Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
- R = (P1 – P2)/Q x 1332
- где P1—P2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332 — коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно во многих случаях не отражает истинных физиологических взаимоотношений между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных.
Другими словами, эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время изменения этих параметров могут быть в разной мере взаимозависимыми.
Так, в определенных условиях уровень САД может определяться преимущественно величиной ОПСС или СВ.
В обычных физиологических условиях ОПСС может составлять от 1200 до 1600 дин.с.см -5; при гипертонической болезни эта величина может возрастать в два раза против нормы и составлять от 2200 до 3000 дин.с.см -5.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных отделов.
При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис.7.
3 показана более выраженная степень повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плече-головной артерии при прессорном рефлексе.
Рис.7.3 Сверху вниз: аортальное давление, перфузионное давление в плече-головной артерии, лерфузионное давление в грудной аорте, отметка времени (20 с), отметка стимуляции.
В соответствии со степенью повышения сопротивления сосудов этих бассейнов прирост кровотока (по отношению к его исходной величине) в плече-головной артерии будет относительно больше, чем в грудной аорте.
На этом механизме построен так называемый эффект «централизации» кровообращения, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.
) направление крови, прежде всего, к головному мозгу и миокарду.
В практической медицине нередко делаются попытки отождествлять уровень артериального давления (или его изменения) с вели деленным термином «тонус» сосудов).
Во-первых, это не следует из уравнения Франка, где показана роль в поддержании и изменении артериального давления и сердечного выброса (Q).
Во-вторых, специальные исследования показали, что между изменениями АД и ОПСС не всегда имеет место прямая зависимость.
Так, нарастание величин этих параметров при нейрогенных влияниях может идти параллельно, но затем ОПСС возвращается к исходному уровню, а артериальное давление оказывается еще повышенным (рис.7.4), что указывает на роль в его поддержании и сердечного выброса.
Рис. 7.4. Повышение суммарного сопротивления сосудов большого круга кровообращения и аортального давления при прессорном рефлексе.
Сверху вниз:
аортальное давление,
перфузионное давление в сосудах большого круга (мм рт.ст.),
отметка нанесения раздражения,
отметка времени (5 с).
Периферическое сопротивление сосудов (ОПСС)
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.
На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R.
Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе.
Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.
Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.
Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз.
Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку.
Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.
Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол.
Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол.
Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.
- Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.
- Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.
- (Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).
Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.
Повышение общего периферического сопротивления сосудов. Что такое общее периферическое сопротивление? Определение основных понятий в интенсивной терапии
Термин «общее периферическое сопротивление сосудов»
обозначает суммарное сопротивление артериол.
Однако изменения тонуса в различных отделах сердечно-сосудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других — вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.
Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта — бесконечно большое ОПСС и отсутствие его току крови.
При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС.
При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5-6 раз и более.
Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим.
В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.
- Владельцы патента RU 2481785:
Группа изобретений относится к медицине и может быть использовано в клинической физиологии, физической культуре и спорте, кардиологии, других областях медицины. У здоровых испытуемых измеряют частоту сердечных сокращений (ЧСС), систолическое артериальное давление (САД), диастолическое артериальное давление (ДАД).
Определяет коэффициент пропорциональности К в зависимости от массы тела и роста. Вычисляют величину ОПСС в Па·мл -1 ·с по оригинальной математической формуле. Затем рассчитывают минутный объем крови (МОК) по математической формуле.
Группа изобретений позволяет получить более точные значения ОПСС и МОК, провести оценку состояния центральной гемодинамики за счет применения физически и физиологически обоснованных расчетных формул. 2 н.п.ф-лы, 1 пр.
Изобретение относится к медицине, в частности к определению показателей, отражающих функциональное состояние сердечно-сосудистой системы, и может быть использовано в клинической физиологии, физической культуре и спорте, кардиологии, других областях медицины.
Для большинства проводимых физиологических исследований на человеке, в которых измеряются показатели пульса, систолического (САД) и диастолического (ДАД) артериального давления полезны интегральные показатели состояния сердечно-сосудистой системы.
Важнейшим из таких показателей, отражающим не только работу сердечно-сосудистой системы, но и уровень обменных и энергетических процессов в организме, является минутный объем крови (МОК).
Общее периферическое сопротивление сосудов (ОПСС) также важнейший параметр, использующийся для оценки состояния центральной гемодинамики .
Наиболее популярной методикой расчета ударного объема (УО), а на его основе и МОК является формула Старра :
УО=90,97+0,54·ПД-0,57·ДАД-0,61·В,
где ПД — пульсовое давление, ДАД — диастолическое давление, В — возраст. Далее МОК вычисляется как произведение УО на частоту сердечных сокращений (МОК=УО·ЧСС). Но точность формулы Старра подвергается сомнению .
Коэффициент корреляции между величинами УО, полученными методами импедансной кардиографии, и величинами, рассчитанными по формуле Старра, составил всего 0,288 .
По нашим данным, расхождение между величиной УО (а, следовательно, и МОК), определенной с помощью метода тетраполярной реографии и рассчитанной по формуле Старра, превышает в отдельных случаях 50% даже в группе здоровых испытуемых.
Известен способ вычисления МОК по формуле Лилье-Штрандера и Цандера :
МОК=АД ред. ·ЧСС,
где АД ред. — артериальное давление редуцированное, АД ред. =ПД·100/Ср.Да, ЧСС — частота сердечных сокращений, ПД — пульсовое давление, вычисляемое по формуле ПД=САД-ДАД, а Ср.Да — среднее давление в аорте, вычисляемое по формуле : Ср.Да=(САД+ДАД)/2.
Но для того, чтобы формула Лилье-Штрандера и Цандера отражала МОК, необходимо, чтобы численное значение АД ред. , представляющее собой ПД умноженное на поправочный коэффициент (100/Ср.Да), совпадало со значением УО, выбрасываемого желудочком сердца за одну систолу. Фактически же, при величине Ср.Да=100 мм рт.ст. величина АД ред.
(а, следовательно, и УО) приравнивается величине ПД, при Ср.Да100 мм рт.ст. — АД ред. становится меньше чем ПД. На самом деле, величина ПД не может приравниваться к величине УО даже и при Ср.Да=100 мм рт.ст. Нормальные средние показатели ПД — 40 мм рт.ст., а УО — 60-80 мл .
Сопоставление показателей МОК, вычисленных по формуле Лилье-Штрандера и Цандера в группе здоровых испытуемых (2,3-4,2 л ), с нормальными величинами МОК (5-6 л ) показывает расхождение между ними в 40-50%.
Технический результат заявляемого способа — повышение точности определения минутного объема крови (МОК) и общего периферического сопротивления сосудов (ОПСС) — важнейших показателей, отражающих работу сердечно-сосудистой системы, уровень обменных и энергетических процессов в организме, оценки состояния центральной гемодинамики за счет применения физически и физиологически обоснованных расчетных формул.
Заявляется способ определения интегральных показателей состояния сердечно-сосудистой системы, заключающийся в том, что у испытуемого в состоянии покоя измеряют частоту сердечных сокращений (ЧСС), систолическое артериальное давление (САД), диастолическое артериальное давление (ДАД), вес и рост. После этого определяют общее периферическое сопротивление сосудов (ОПСС).
Величина ОПСС пропорциональна диастолическому артериальному давлению (ДАД) — чем больше ДАД, тем больше ОПСС; временным интервалам между периодами изгнания (Тпи) крови из желудочков сердца — чем больше интервал между периодами изгнания, тем больше ОПСС; объему циркулирующей крови (ОЦК) — чем больше ОЦК, тем меньше ОПСС (ОЦК зависит от веса, роста и пола человека).
ОПСС рассчитывают по формуле:
- ОПСС=К·ДАД·(Тсц-Тпи)/Тпи,
- где ДАД — диастолическое артериальное давление;
- Тсц — период сердечного цикла, вычисляемый по формуле Тсц=60/ЧСС;
- Тпи — период изгнания, вычисляемый по формуле :
- Тпи=0,268·Тсц 0,36 ≈Тсц·0,109+0,159;
К — коэффициент пропорциональности, зависящий от массы тела (МТ), роста (Р) и пола человека. К=1 у женщин при МТ=49 кг и Р=150 см; у мужчин при МТ=59 кг и Р=160 см. В остальных случаях К для здоровых испытуемых вычисляется по правилам, представленным в табл.1.
- МОК=Ср.Да·133,32·60/ОПСС,
- Ср.Да=(САД+ДАД)/2;
- В таблице 2 приведены примеры расчетов МОК (РМОК) по этому способу у 10 здоровых испытуемых в возрасте 18-23 лет, сопоставленные с величиной МОК, определенной с помощью неинвазивной мониторной системы «МАРГ 10-01» (Микролюкс, Челябинск), в основе работы которой лежит метод тетраполярной биоимпедансной реокардиографии (погрешность 15%).
Таблица 2. | |||||||||
Пол | № | Р, См | MT, кг | ЧСС уд/мин | САД мм рт.ст. | ДАД мм рт.ст. | МОК, мл | РМОК, мл | Отклонение % |
ж | 1 | 154 | 42 | 72 | 117 | 72 | 5108 | 5108 | 0 |
2 | 157 | 48 | 75 | 102 | 72 | 4275 | 4192 | 2 | |
3 | 172 | 56 | 57 | 82 | 55 | 4560 | 4605 | 1 | |
4 | 159 | 58 | 85 | 107 | 72 | 6205 | 6280 | 1 | |
5 | 164 | 65 | 71 | 113 | 71 | 6319 | 6344 | 1 | |
6 | 167 | 70 | 73 | 98 | 66 | 7008 | 6833 | 3 | |
м | 7 | 181 | 74 | 67 | 110 | 71 | 5829 | 5857 | 0,2 |
8 | 187 | 87 | 69 | 120 | 74 | 6831 | 7461 | 9 | |
9 | 193 | 89 | 55 | 104 | 61 | 6820 | 6734 | 1 | |
10 | 180 | 70 | 52 | 113 | 61 | 5460 | 5007 | 9 | |
Среднее отклонение между величинами МОК и РМОК в этих примерах | 2,79% |
Отклонение расчетной величины МОК от ее измеренной величины по методу тетраполярной биоимпедансной реокардиографии у 20 здоровых испытуемых в возрасте 18-35 лет в среднем составило 5,45%. Коэффициент корреляции между этими величинами составил 0,94.
Отклонение рассчитанных величин ОПСС и МОК по данному методу от измеряемых величин может быть значительным лишь при существенной ошибке определения коэффициента пропорциональности К.
Последнее возможно при отклонениях в работе механизмов регуляции ОПСС и/или при избыточных отклонениях от нормы МТ (МТ>>Р(см)-101).
Однако погрешности определения ОПСС и МОК у этих пациентов могут быть нивелированы либо за счет введения поправки в расчет коэффициента пропорциональности (К), либо введением дополнительного поправочного коэффициента в формулу расчета ОПСС.
Эти поправки могут быть как индивидуальными, т.е. основанными на предварительных измерениях оцениваемых показателей у конкретного пациента, так и групповыми, т.е. основанными на статистически выявленных сдвигах К и ОПСС у определенной группы пациентов (с определенным заболеванием).
Реализация способа осуществляется следующим образом.
Для проведения измерений ЧСС, САД, ДАД, веса и роста могут использоваться любые сертифицированные аппараты для автоматического, полуавтоматического, ручного измерения пульса, артериального давления, веса и роста. У испытуемого в состоянии покоя измеряют ЧСС, САД, ДАД, массу тела (вес) и рост.
- После этого вычисляют коэффициент пропорциональности (К), необходимый для вычисления ОПСС и зависящий от массы тела (МТ), роста (Р) и пола человека. У женщин К=1 при МТ=49 кг и Р=150 см;
- при МТ≤49 кг К=(МТ·Р)/7350; при МТ>49 кг К=7350/(МТ·Р).
- У мужчин К=1 при МТ=59 кг и Р=160 см;
- при МТ≤59 кг К=(МТ·Р)/9440; при МТ>59 кг К=9440/(МТ·Р).
- После этого определяют ОПСС по формуле:
- ОПСС=К·ДАД·(Тсц-Тпи)/Тпи,
- Тсц=60/ЧСС;
- Тпи — период изгнания, вычисляемый по формуле :
- Тпи=0,268·Т сц 0,36 ≈Тсц·0,109+0,159.
- МОК рассчитывается по уравнению:
- МОК=Ср.Да·133,32·60/ОПСС,
- где Ср.Да — среднее давление в аорте, вычисляемое по формуле:
- Ср.Да=(САД+ДАД)/2;
133,32 — количество Па в 1 мм рт.ст.;
ОПСС — общее периферическое сопротивление сосудов (Па·мл -1 ·с).
Реализация способа поясняется нижеприведенным примером.
Женщина — 34 г., рост 164 см, МТ=65 кг, пульс (ЧСС) — 71 уд./мин, САД=113 мм рт.ст., ДАД=71 мм рт.ст.
- К=7350/(164·65)=0,689
- Тсц=60/71=0,845
- Тпи≈Тсц·0,109+0,159=0,845·0,109+0,159=0,251
- ОПСС=К·ДАД·(Тсц-Тпи)/Тпи=0,689·71·(0,845-0,251)/0,251=115,8≈116 Па·мл -1 ·с
Ср.Да=(САД+ДАД)/2=(113+71)/2=92 мм рт.ст.
МОК=Ср.Да·133,32·60/ОПСС=92·133,32·60/116=6344 мл≈6,3 л
Отклонение этой рассчитанной величины МОК у данной испытуемой от величины МОК, определенной с помощью тетраполярной биоимпедансной реокардиографии, составило менее 1% (см. табл.2, испытуемая №5).
Таким образом, предложенный способ позволяет достаточно точно определять величины ОПСС И МОК.
СПИСОК ЛИТЕРАТУРЫ
1. Вегетативные расстройства: Клиника, диагностика, лечение. / Под ред. А.М.Вейна. — М.: ООО «Медицинское информационное агентство», 2003. — 752 с., с.57.
2. Зислин Б.Д., Чистяков А.В. Мониторинг дыхания и гемодинамики при критических состояниях. — Екатеринбург: Сократ, 2006. — 336 с., с.200.
3. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965. 275 с., с.111.
Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется изуравнения Пуазейля для гидродинамики:
где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.
Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
где Р1—Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332— коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных.
Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми.
Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.
В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин • с ¦ см , при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200—3000 дин • с • см-5.
Величина ОПССсостоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.
3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте.
На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
65
Рассмотрим для конкретности пример ошибочного (ошибка, если делить на S) вычисления общего сосудистого сопротивления. В ходе обобщения клинических результатов используются данные больных разного роста, возраста и веса.
Для крупного больного (например, стокилограммового) МОК 5 литров в минуту в покое может быть недостаточным. Для среднего – в пределах нормы, а для больного малого веса, скажем, 50 килограмм – избыточным.
Как учесть эти обстоятельства?
- В течение последних двух десятков лет большинство врачей пришли к негласной договоренности: относить те показатели кровообращения, которые зависят от размеров человека, к поверхности его тела. Поверхность (S) вычисляется в зависимости от веса и роста по формуле (хорошо построенные номограммы дают более точные отношения):
- S=0,007124•W0,425•H0,723, W–вес; H–рост.
- Если исследуется один больной, то использование индексов не актуально, но когда нужно сравнить показатели различных больных (группы), провести их статобработку, сравнение с нормами, то почти всегда необходимо пользоваться индексами.
Общее сосудистое сопротивление большого круга кровообращения (ОСС) используется широко и, к сожалению, стало источником необоснованных выводов и интерпретаций. Поэтому мы здесь остановимся на нём подробно.
Напомним формулу, по которой вычисляется абсолютная величина общего сосудистого сопротивления (ОСС, или ОПС, ОПСС, используются разные обозначения):
ОСС=79,96•(АД-ВД)•МОК-1 дин*с*см-5;
79,96 – коэффициент размерности, АД – среднее артериальное давление в мм рт. ст., ВД — венозное давление в мм рт. ст., МОК – минутный объем кровообращения в л/мин)
- Пусть у крупного человека (полного взрослого европейца) МОК=4 литра в минуту, АД-ВД=70, тогда ОСС приблизительно (чтобы не утерять суть за десятыми долями) будет иметь величину
- OСC=79,96•(АД-ВД)•МОК-1@ 80•70/4@1400 дин*с*см-5;
- запомним — 1400 дин*с*см-5.
- Пусть у небольшого человека (худого, низкого роста, но вполне жизнеспособного) МОК=2 литра в минуту, АД-ВД=70, отсюда ОСС будет приблизительно
- 79,96•(АД-ВД)•МОК-1@80•70/2@2800 дин*с*см -5.
ОПС у небольшого человека больше, чем у крупного в 2 раза. У обоих гемодинамика в норме, а сравнивать показатели ОСС между собой и с нормой не имеет никагого смысла. Однако такие сравнения выполняются, и по ним делаются клинические заключения [34, 47 и др.].
- Чтобы можно было сравнивать, вводятся индексы, учитывающие поверхность (S) тела человека. Умножив общее сосудистое сопротивление (ОСС) на S, получим индекс (ОСС*S=ИОСС), который можно сравнивать:
- ИОСС=79,96•(АД-ВД)•МОК-1•S (дин*с*м2*см-5).
- Из опыта измерений и вычислений известно, что для крупного человека S примерно 2 м2, для очень маленького — примем 1 м2. Их общие сосудистые сопротивления не будут равными, а индексы равны:
- ИОСС=79,96•70•4-1•2=79,96•70•2-1•1=2800.
- Если исследуется один и тот же больной без сравнения с другими и с нормативами, вполне допустимо использовать прямые абсолютные оценки функции и свойств ССС.
- Если исследуются разные, особенно отличающиеся размерами больные и если необходима статистическая обработка, то нужно использовать индексы.
- Индекс эластичности артериального сосудистого резервуара (ИЭА)
- ИЭА = 1000 СИ/[(АДС — АДД)*ЧСС]
вычисляется в соответствии с законом Гука и моделью Франка. ИЭА тем больше, чем больше СИ, и тем меньше, чем больше произведение частоты сокращений (ЧСС) на разность артериального систолического (АДС) и диастолического (АДД) давлений.
Можно вычислять эластичность артериального резервуара (или модуль упругости) используя скорость движения пульсовой волны.
При этом будет оценен модуль упругости только той части артериального сосудистого резервуара, которая используется для измерения скорости пульсовой волны.
Индекс эластичности лёгочного артериального сосудистого резервуара (ИЭЛА)
ИЭЛА = 1000 СИ/[(ЛАДС — ЛАДД)*ЧСС]
вычисляется аналогично предыдущему описанию: ИЭЛА тем больше, чем больше СИ и тем меньше, чем больше произведение частоты сокращений на разность лёгочного артериального систолическкого (ЛАДС) и диастолического (ЛАДД) давлений. Эти оценки очень приближённы, надеемся, что с усовершенствованием методик и аппаратуры они будут улучшены.
Индекс эластичности венозного сосудистого резервуара (ИЭВ)
ИЭВ = (V/S-АД•ИЭА-ЛАД•ИЭЛА-ЛВД•ИЭЛВ)/ВД
вычисляется с помощью математической модели. Собственно, математическая модель является главным инструментом достижения системности показателей. При имеющихся клинико — физиологических знаниях модель не может быть адекватной в обычном понимании.
Непрерывная индивидуализация и возможности вычислительной техники позволяют резко увеличить конструктивность модели.
Это делает модель полезной, несмотря на слабую адекватность по отношению к группе больных и к одному для различных условий лечения и жизни.
Индекс эластичности лёгочного венозного сосудистого резервуара (ИЭЛВ)
ИЭЛВ = (V/S-АД•ИЭА-ЛАД•ИЭЛА)/(ЛВД+В•ВД)
вычисляется, как и ИЭВ, с помощью математической модели. Усредняет как собственно эластичность лёгочного сосудистого русла так и влияние на него альвеолярного русла и режима дыхания. В – коэффициент настройки.
Индекс общего периферического сосудистого сопротивления (ИОСС) был рассмотрен раньше. Повторим здесь вкратце для удобства читателя:
ИОСС=79,92 (АД-ВД)/СИ
Это отношение не отражает в явном виде ни радиуса сосудов, ни их ветвления и длины, ни вязкости крови, а также многого другого. Зато он отображает взаимозависимость СИ, ОПС, АД и ВД.
Подчеркнём, что учитывая масштаб и виды усреднений (по времени, по длине и сечению сосуда и т.п.), который свойственен современному клиническому контролю, такая аналогия полезна.
Более того, это почти что единственно возможная формализация, если, конечно, задача — не теоретические исследования, а клиническая практика.
Показатели ССС (системные наборы) для этапов операции АКШ. Индексы выделены жирным шрифтом
Показатели ССС | Обозначение | Размерности | Поступление в оперблок | Окончание операции | Среднее за период времени в реанимации до эстубации |
Сердечный индекс | СИ | л/(мин м2) | 3,07±0,14 | 2,50±0,07 | 2,64±0,06 |
Частота сердечных сокращений | ЧСС | уд/мин | 80,7±3,1 | 90,1±2,2 | 87,7±1,5 |
Артериальное давление систолическое | АДС | мм рт.ст. | 148,9±4,7 | 128,1±3,1 | 124,2±2,6 |
Артериальное давление диастолическое | АДД | мм рт.ст. | 78,4±2,5 | 68,5±2,0 | 64,0±1,7 |
Артериальное давление среднее | АД | мм рт.ст. | 103,4±3,1 | 88,8±2,1 | 83,4±1,9 |
Легочное артериальное давление систолическое | ЛАДС | мм рт.ст. | 28,5±1,5 | 23,2±1,0 | 22,5±0,9 |
Легочное артериальное давление диастолическое | ЛАДД | мм рт.ст. | 12,9±1,0 | 10,2±0,6 | 9,1±0,5 |
Легочное артериальное давление среднее | ЛАД | мм рт.ст. | 19,0±1,1 | 15,5±0,6 | 14,6±0,6 |
Центральное венозное давление | ЦВД | мм рт.ст. | 6,9±0,6 | 7,9±0,5 | 6,7±0,4 |
Легочное венозное давление | ЛВД | мм рт.ст. | 10,0±1,7 | 7,3±0,8 | 6,5±0,5 |
Индекс левого желудочка сердца | ИЛЖ | см3/(с м2 мм рт.ст.) | 5,05±0,51 | 5,3±0,4 | 6,5±0,4 |
Индекс правого желудочка сердца | ИПЖ | см3/(с м2 мм рт.ст.) | 8,35±0,76 | 6,5±0,6 | 8,8±0,7 |
Индекс сосудистого сопротивления | ИОСС | дин с м2 см-5 | 2670±117 | 2787±38 | 2464±87 |
Индекс легочного сосудистого сопротивления | ИЛСС | дин с м2 см-5 | 172±13 | 187,5±14,0 | 206,8±16,6 |
Индекс эластичности вен | ИЭВ | см3 м -2 мм рт.ст.-1 | 119±19 | 92,2±9,7 | 108,7±6,6 |
Индекс эластичности артерий | ИЭА | см3 м -2 мм рт.ст.-1 | 0,6±0,1 | 0,5±0,0 | 0,5±0,0 |
Индекс эластичности легочных вен | ИЭЛВ | см3 м -2 мм рт.ст.-1 | 16,3±2,2 | 15,8±2,5 | 16,3±1,0 |
Индекс эластичности легочных артерий | ИЭЛА | см3 м -2 мм рт.ст.-1 | 3,3±0,4 | 3,3±0,7 | 3,0±0,3 |
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту: